首页 / 科研平台 / 专业科研实验室

专业科研实验室

个人简介林景全_副本.png

姓名:林景全

出生年月:196611

学历学位:研究生/博士

所属学院:物理学院

电子邮箱:linjingquan@cust.edu.cn

职称:教授

指导研究生所属学科及导师类别:物理学、电子科学与技术、新一代电子信息技术:博士生导师

研究方向:飞秒激光应用,极紫外光刻技术,光电子显微技术


教育经历

19859-19897月,长春光机学院,光学物理系,激光专业,工学学士

19919-19944月,长春光机学院,光学物理系,光学专业,理学硕士

19959-19992月,中科院长春光机所,应用光学国家重点实验室,理学博士

19993-20006月,中科院物理研究所,光物理实验室,博士后


工作经历

20007-20026月,日本电话电报公司,基础学研究所,研究人员

20027-20053月,独立行政法人日本产业技术综合研究所,研究人员

20054-20093月,慕尼黑大学物理系,研究人员

20094-至今,长春理工大学,物理学院,教授


教学工作

课程教学:本科生《专业概论》、 《科研与学术论文》,研究生《超快光物理》、《表面等离激元物理》

主要科研工作

科研获奖

1.飞秒激光等离子体丝的应用基础研究,吉林省科学技术奖,二等奖,2018.11,排名:1/7

2.激光诱导击穿光谱技术及其应用基础研究,吉林省自然科学奖,三等奖,2020.11,排名:2/5

学术论文

[1] Wang G, Lang P, Qin Y, et al. Nanoscale photoemission from a focused propagating surface plasmon[J]. Physical Review B, 2021, 104(15): 155432.

[2] Wang G, Song X, Jiang M, et al. Fano resonance enhanced multiphoton photoemission from single plasmonic nanostructure excited by femtosecond laser[J]. Physical Review B, 2021, 103(15): 155403.

[3] Qin Y, Ji B, Song X, et al. Ultrafast spatiotemporal control of directional launching of surface plasmon polaritons in a plasmonic nano coupler[J]. Photonics Research, 2021, 9(4): 514-520.

[4] Liu Z, Ye F, Tao H, et al. Effects of frost formation on the ice adhesion of micro-nano structure metal surface by femtosecond laser[J]. Journal of Colloid and Interface Science, 2021, 603: 233-242.

[5] Liu Z, Tao H, Lin J. Anisotropic ice adhesion of micro-nano-structured metal surface by a femtosecond laser[J]. Langmuir, 2021, 37(31): 9571-9576.

[6] Guo Y, Wang J, Song X, et al. Gaseous pre-lattice assisted supercontinuum enhancement of femtosecond laser filamentation[J]. Physics of Plasmas, 2021, 28(7): 072303.

[7] Qin Y, Ji B, Song X, et al. Disclosing transverse spin angular momentum of surface plasmon polaritons through independent spatiotemporal imaging of its in-plane and out-of-plane electric field components[J]. Photonics Research, 2020, 8(6): 1042-1048.

[8] Xu Y, Qin Y, Ji B, et al. Polarization manipulated femtosecond localized surface plasmon dephasing time in an individual bowtie structure[J]. Optics express, 2020, 28(7): 9310-9319.

[9] Zhao Z, Lang P, Qin Y, et al. Distinct spatiotemporal imaging of femtosecond surface plasmon polaritons assisted with the opening of the two-color quantum pathway effect[J]. Optics Express, 2020, 28(13): 19023-19033.

[10] Guo Y, Wang J, Lin J. Manipulation of femtosecond laser filamentation by a gaseous lattice[J]. Optics Express, 2020, 28(25): 37362-37372.

[11] Qin Y, Song X, Ji B, et al. Demonstrating a two-dimensional-tunable surface plasmon polariton dispersion element using photoemission electron microscopy[J]. Optics Letters, 2019, 44(11): 2935-2938.

[12] Lang P, Song X, Ji B, et al. Spatial-and energy-resolved photoemission electron from plasmonic nanoparticles in multiphoton regime[J]. Optics Express, 2019, 27(5): 6878-6891.

[13] Lang P, Ji B, Song X, et al. Ultrafast switching of photoemission electron through quantum pathways interference in metallic nanostructure[J]. Optics letters, 2018, 43(23): 5721-5724.

[14] Ji B, Song X, Dou Y, et al. Two-color multiphoton emission for comprehensive reveal of ultrafast plasmonic field distribution[J]. New Journal of Physics, 2018, 20(7): 073031.

[15] Koya A N, Lin J. Charge transfer plasmons: Recent theoretical and experimental developments[J]. Applied Physics Reviews, 2017, 4(2): 021104.

[16] Ji B, Qin J, Tao H, et al. Subwavelength imaging and control of ultrafast optical near-field under resonant-and off-resonant excitation of bowtie nanostructures[J]. New Journal of Physics, 2016, 18(9): 093046.

[17] Camino A, Li S, Hao Z, et al. Spectroscopic determination of NO2, NO3, and O3 temporal evolution induced by femtosecond filamentation in air[J]. Applied Physics Letters, 2015, 106(2): 021105.

[18] Camino A, Hao Z, Liu X, et al. High spectral power femtosecond supercontinuum source by use of microlens array[J]. Optics Letters, 2014, 39(4): 747-750.

[19] Alshershby M, Ren Y, Qin J, et al. Diagnosis of femtosecond plasma filament by channeling microwaves along the filament[J]. Applied Physics Letters, 2013, 102(20): 204101.

[20] Ren Y, Alshershby M, Hao Z, et al. Microwave guiding along double femtosecond filaments in air[J]. Physical Review E, 2013, 88(1): 013104.

[21] Camino A, Hao Z, Liu X, et al. Control of laser filamentation in fused silica by a periodic microlens array[J]. Optics express, 2013, 21(7): 7908-7915.

[22] Guo K, Lin J, Hao Z, et al. Triggering and guiding high-voltage discharge in air by single and multiple femtosecond filaments[J]. Optics Letters, 2012, 37(2): 259-261.

[23] Tao H, Lin J, Hao Z, et al. Formation of strong light-trapping nano-and microscale structures on a spherical metal surface by femtosecond laser filament[J]. Applied Physics Letters, 2012, 100(20): 201111.

[24] Lin J, Weber N, Escher M, et al. Three-dimensional characterization of extreme ultraviolet mask blank defects by interference contrast photoemission electron microscopy[J]. Optics Express, 2008, 16(20): 15343-15352.

[25] Lin J, Weber N, Maul J, et al. At-wavelength inspection of sub-40 nm defects in extreme ultraviolet lithography mask blank by photoemission electron microscopy[J]. Optics letters, 2007, 32(13): 1875-1877.


发明专利

[1] 一种含有飞秒激光等离子丝的双线传输装置,2011-10-25,专利号:ZL201110326225.2,排名:2/4

[2] 基于飞秒激光在硅表面功能微纳米材料的制备装置和方法, 2011-9-21 专利号:ZL201110280812.2,排名:1/3

[3] 一种控制金属表面纳米结构尺寸和分布的方法,2013-7-25,专利号:ZL201310315665.7,排名:2/5

[4] 一种控制金属表面微纳米结构尺寸和分布的方法, 2017-07-04, 专利号ZL201310315665.7,排名2/5

[5] 一种利用玻璃掺杂钆靶获得高光谱纯度极紫外光源的方法,2018-07-20, 专利号ZL201510141270.9,排名1/4

[6] 激光诱导产生等离子体墙屏蔽冲击波传播的装置和方法, 2018-12, 专利号ZL201610411901.9,排名3/3

[7] 一种利用激光超连续辐射的测量反射率的装置和方法, 2019-04-03, 专利号ZL201510827722.9 ,排名5/5

[8] 飞秒激光在透明光学介质中的阵列成丝装置和方法, 2019-05-10, 专利号ZL201510789648.6,排名5/5

[9] 一种利用TiO2粒子阵列辅助飞秒激光超衍射极限加工的方法, 2019-12-31, 专利号ZL201710348325.2,排名4/5

[10] 一种用于实现可调谐表面等离激元分频的方法和系统, 2019-4-18, 专利号ZL2019 1 0349586.5,排名2/2

[11] 光学薄膜高为多目标优化设计方法,2020-7-23,专利号ZL2020 1 0719815.0,排名2/3

[12] 一种采用飞秒激光加工多种纳米图案的方法, 2021-11-28, 专利号ZL2019 1 1189281.9,排名3/4

set 限制解除